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Recently BinGEL [7] has calculated, using a united atom approximation, the
united atom molecular orbital energies of AH, and AH; systems as a function of
nuclear position. The results agree qualitatively with the predictions of WaLsH [2]
concerning these systems.

The purpose of this paper is the ex- z
tension of the analysis of BINeEL to AH, GL ¢ ¢
type systems. Specifically we will assess v v
the changes in orbital energy as the
nuclear geometry undergoes the transfor-
mation from a tetrahedral (7'z) configura-
tion to the square planar (D,;) configu- nucleus &
ration.

We shall first briefly outline the der-
ivation of the pertinent formulas, their IRyl
detailed derivation having been given by
Bmvger. It is assumed that an effective O
one-electron Hamiltonian of the form
h="hy+ V can be written where the k) Irl
perturbation term V is given by b

1 1
V= gz”‘ (| r|  |r-R« [) - @) Fig. 1. Coordinate system and distances in
the UA expansion (after BIngrL)
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Fig. 1 displays the various distances and
the coordinate system used.

It is further assumed that a set of zero-order united atom functions v exist
which are eigenfunctions of Ay, ie., hyy; = gy Furthermore, we shall restrict
ourselves to considerations of ¢ and p type orbitals only. The evaluation of the
elements of the perturbation matrix ¥ proceeds as follows: we write

Viy = [v¥ Vpsdv =¥ ) Vi) av (2a)

V= 22,00 (17 = =gy o (2b)
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The transition density p# and (| » — Ry |)~* are expanded about the origin of the
united atom (defined by > Z,R, = 0) as follows:

L 2L +1 (L-|M)!
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|[r— R, |7 = +Z e (K- V]! P ¥ cos 0) P (cos 8,) eiNe—o,) . (3b)
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Where r<(rs) is the lesser (greater) or r and R,. Integration using (3a), (3b) gives
the result
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Substitution of g i o(r) ~ 093(0) and ¢{R, = r into the second integral on the
right hand side and subsequent integration over ¢ gives
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where Q¥,, is the multipole coefﬁclentjrg () dr.

Furthermore the requirement of inversion symmetry restricts L to even
integers only. Retaining terms up to and including L = 2 we have

.s +2 2 — | M) o
Vy=Ro0- T~ 3 G O T o)

where
T =2 ZRy; Ty = > Zy B2 P\ (cos Oy) e Mo,
* o

For the case where

2L +1 M) . "
Qij = Rnilt Rnﬂj Yl m; Yllm.‘l 2 Z 4n (L + { M :;' ‘PI (OOS 0) e—ZMqJ TL Q?ZM (T)

(6)
the multipole coefficient Ql 5 becomes

" L-{M\) - a3
%M = [ﬁﬂ‘{;—'] 6 (M, my — Mj) ( -—1)”“5 C’L(lzmz 5 ij]') 'S’j‘f_(L'H) le‘Rnﬂjd’r
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)

where the sign factor § = (—1)/s(Imi! +lm;| +1my—m.l)y and the OF are the
Condon-Shortley angular coefficients.

Having restricted ourselves to s and p orbitals only there are no off-diagonal
elements of V between the s orbital and three p orbitals and thus

E(28) = &25 + % st(o) A (8)



Walsh’s Rules for AH, Systems 275

h

// ’

Hy

X

Tig. 2. Coordinate system, choices of axes, and UA position for AH, molecules (¢, = 7/4;
g = 37/4; g = br/d; ¢, = Trf4)

For the p orbitals the perturbation matrix becomes, using Egs. (5, 7)

mz/ﬂ’bj 1 —1 0
1 Ty 3T, ~1[y2T,
—1 —3T¥ T, ~1/y2rT¥ X 23
0 —1/Ver¥ —-1/y2T, ~2T, (9a)
where
{8y = ‘f Ei—%i r2dr . (9b)
0

The geometrical arrangement of the five atoms in AH, and the UA position
are indicated in Fig. 2. (All A-H bond lengths are assumed equal.)
Here

T = 4R?
Ty = 4R2P,(cos 6) = T- P)(cos 0) = %L (8 cos? 6 — 1) (10)
T=T,=0
and the V matrix is completely diagonal giving the energies
E@2py) = E@2p_y) = eap + T 5 7% (11a)
E(2p,) = e2p — 2Ty 5 <r~%> (11b)

For the tetrahedral arrangement 6 = 3 (109°28’) and cos f = 1/)/3 and T, = 0.
Hence H(2p,) = E(2p,) = H(2p—) = é2p. For the square planar arrangement
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Tig. 3. Correlation diagram for AH, molecules. The right ordinate has an absolute scale, the
left one a relative scale. Note that there is a break in the ordinates between the s and p orbitals

0 = #/2 and cos 0 = 0 and Ty = —37. Hence
E2p,) = e2p + § B2 % (12a)
E(2p,) = B2p-,) = esp — § B2 (12b)

Thus with Egs. (10, 11a, 11b) we can draw a correlation diagram for AH, mole-
cules, which is shown in Fig. 3. From the diagram we conclude that AH, systems
with between 3 and 7 valence electrons should be planar, for example CHJ (7
valence electrons). Furthermore, the first excited state of such systems should be
non planar (except for the case of 6 valence electrons).
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